2006 AgStar National Conference

"European Digester Technology"

Curt Gooch, P.E.

and

Norman Scott, PhD

Biological & Environmental Engineering Cornell University

Table 4. Estimated net income or loss for the five digester systems.

		Farm					
		AA	DDI	NH	ML	FA	
Number of Cows			850	1,100	740	100	
Capital Costs	\$38/0		000	1,100	7 40	100	
Digester Set	ΨΟΟ/		*440.000*4	\$339.400	\$298,149	\$80,183	
Separator Set			00	\$61,000		\$44,013	
Gas Utilization Equipment		C 22	00		\$130,431	\$13,135	
		-φ22	cow ¹⁰				
Total Capital Cost			\ <u>\</u>	*	\$490,269	\$137,331	
Total Capital Cost Per Cow		\$606			\$663	\$1,373	
Annual Projected Capital Cost		\$25,468	-\$24/	cow	\$49,016	\$13,396	
Annual Projected Capital Cost Per Cow		\$51		,		\$134	
Total Estimated Annual Cost*1 Total Estimated Annual Cost Per Cow*1		\$37,540 \$75	\$79,317 \$93	\$293	3/cow	\$21,497 \$215	
Total Estimated Annual Reve	nues	\$56,445	\$60,400* ³	\$77,680	\$2	100/	
Total Estimated Annual Revenues Per Cow		\$113	\$71* ³	\$71	-\$1	106/co	
Total Estimated Annual Cost or Benefit*1 *2		\$18,906	-\$18,917 * ² * ³	-\$26,280* ²	\$2		
Total Estimated Annual Benefit Per Cow*1 *2		\$38	-\$22* ² * ³	-\$24* ²	\$293	-\$106* ²	

Does not include system electrical use.

Source: Wright and Gooch, 2004

^{*2} Negative numbers mean the farm incurs a net loss from the digester system.

^{*} The electrical savings for DDI assumes the price of electricity is 10 cents/ Kw. This farm actually incurs a lower cost due to a specific business initiative. Since this is not typical of most dairy farms, the higher price is used.

^{*4} This cost assumes the microturbines were purchased new.

Denmark Legislation

- 1. 9-month manure storage period required
- 2. 40 percent of a storage's capital cost covered by the government if the farmer supplies manure to biogas plant.
- 3. Restrictions on the amount of manure land applied farms cooperating with biogas plants only get back the amount of manure they can legally apply.

Denmark Legislation (con't)

- 4. Organic waste cannot be land filled.
- 5. Organic waste incinerated is taxed, but exempt if recycled (includes AD).
- 6. Power companies must purchase electricity
- 7. Government provides 0.27 DKK per KWh

Denmark Legislation (con't)

- 7. Government provided 20 to 40 percent investment grants for biogas plants.
- 8. Low interest loans for plants that collaborated with district heating.
- 9. Biogas and heat from biogas plants is exempt from energy taxes.

Centralized AD plants in **Denmark**

First: 1984

Last: 1998

- = Existing
- = Planned

Source: K.Hjort-Gregersen, 2006

Percent Change: Nutrients

Denmark Centralized Digesters Ownership

No. of Plants

Farmer Owned Co-operatives	9
Farmer and Consumer Owned	5
Municipalities	3
Private Foundations	2
Limited Company	1

Source: Danish BioEngineering, 2005

Denmark Centralized Digesters¹

	<u>Least</u>	Greatest
Capacity (m ³)	750	9,200
Manure received (m ³)	658	16,006
Substrate received (m ³)	236	3,947
Theoretical HRT (days)	10	41
Biogas Production (m ³)	40,000	639,514
Biogas per Biomass (m³/m³)	25.8	105.6
Electrical Power (kWh)	227,940	1,380,210

¹For September, 2005

Source: Danish BioEngineering, 2005

Denmark Centralized Digesters Revenue

Revenue

Tipping Fees: 1/3

Electricity Sales: 1/3

Heat Sales: 1/3

Denmark Centralized Digesters Economics

No. of Plants

Acceptable 5

Balance 5

Under Pressure 3

Unsatisfactory 4

Source: Hjort-Gregersen, 1999

Potential Health Concerns

1. Bacteria

Pasteurization: 70C for one hour

J. IIILESIIIIAI PAIASILES

4. Others

Pasteurization Equivalent

Temperature (C)	MGRT in a Thermophilic Tank (hrs.)
52	10
53.5	8
55	6

Source: Danish Ministry of Environment and Energy, 2000

Pasteurization Equivalent

Temp. (C)	MGRT by Treatment in a Separate Sanitation Tank (hrs.)		
	Before or After Thermophilic Digestion	Before or After Mesophilic Digestion	
55	5.5	7.5	
60	2.5	3.5	

Source: Danish Ministry of Environment and Energy, 2000

Hydrogen Sulfide (H₂S) Biological Reduction

 $H_2S + 0.5 O_2 \rightarrow S + H_2O$ (Partial Oxidation)

 $H_2S + 2O_2 + 2OH \rightarrow SO_4 + 2H_2O$ (Total Oxidation)

Thiobacillus sp.

Technically Usable Energy Potential

Average Size of New Biogas Plants in Germany

Potential Biogas Yields

Source: Mathias Effenberger, 2006

Electrical Energy Surplus Projections ML

